TEMAS DE INTERÉS

LAS GRANDES REVOLUCIONES DEL SIGLO XX

Durante la primera mitad del siglo xx –estrictamente en su primer cuarto– se produjeron dos grandes revoluciones científicas. Fue en la física donde tuvieron lugar tales cataclismos cognitivos, a los que conocemos bajo la denominación de revoluciones relativista y cuántica, asociadas a la formulación de las teorías especial y general de la relatividad (Einstein 1905 a 1915) y de la mecánica cuántica (Heisenberg 1925; Schrödinger 1926).

Relatividad

Mucho se ha escrito y escribirá en el futuro sobre la importancia de estas formulaciones teóricas y cómo afectaron al conjunto de la física antes incluso de que la centuria llegase a su mitad. Creada para resolver la «falta de entendimiento» que crecientemente se percibía entre la mecánica newtoniana y la electrodinámica de James Clerk Maxwell (1831-1879), la teoría de la relatividad especial obligó a modificar radicalmente las ideas y definiciones –vigentes desde que Isaac Newton (1642-1727) las incorporase al majestuoso edificio contenido en su Philosophiae Naturales Principia Mathematica (1687)– de conceptos tan básicos desde el punto de vista físico, ontológico y epistemológico como son espacio, tiempo y materia (masa). El resultado, en el que las medidas de espacio y tiempo dependían del estado de movimiento del observador y la masa, m, era equivalente a la energía, E (la célebre expresión E=m•c2, donde c representa la velocidad de la luz), abrió nuevas puertas a la comprensión del mundo físico; sirvió, por ejemplo, para comenzar a entender cómo era posible que los elementos radiactivos (uranio, polonio, radio, torio) que Henri Becquerel (1852-1908) junto a Marie (1867-1934) y Pierre Curie (1859-1906) habían sido los primeros en estudiar (1896, 1898), emitiesen radiaciones de manera continua, sin aparentemente perder masa.
¡Y qué decir de la teoría general de la relatividad, que explicaba la gravedad a costa de convertir el espacio –mejor dicho, el cuatridimensional espacio-tiempo– en curvo y con una geometría variable! Inmediatamente se comprobó que con la nueva teoría einsteiniana era posible comprender mejor que con la gravitación universal newtoniana los fenómenos perceptibles en el Sistema Solar (se resolvió, por ejemplo, una centenaria anomalía en el movimiento del perihelio de Mercurio). Y por si fuera poco, enseguida el propio Einstein (1917) tuvo la osadía intelectual de aplicar la teoría de la relatividad general al conjunto del Universo, creando así la cosmología como disciplina auténticamente científica, predictiva. Es cierto que el modelo que Einstein propuso entonces, uno en el que el Universo era estático, no sobrevivió finalmente, pero lo importante, abrir la puerta al tratamiento científico del universo, constituyó un acontecimiento difícilmente igualable en la historia de la ciencia (1).
Para encontrar la solución exacta de las ecuaciones de la cosmología relativista que utilizó, Einstein (1879-1955) se guio por consideraciones físicas. Otros matemáticos o físicos con especiales sensibilidades y habilidades matemáticas, no siguieron semejante senda, hallando muy pronto nuevas soluciones exactas –que implícitamente representaban otros modelos de universo– recurriendo únicamente a técnicas matemáticas para tratar las complejas (un sistema de diez ecuaciones no lineales en derivadas parciales) ecuaciones de la cosmología relativista. Así, Alexander Friedmann (1888-1925), Howard Robertson (1903-1961) y Arthur Walker (n. 1909) encontraron soluciones que implicaban modelos de universo en expansión. De hecho, hubo otro científico que obtuvo un resultado similar: el sacerdote católico belga Georges Lemaître (1894-1966), pero éste debe ser mencionado por separado ya que al igual que había hecho Einstein con su modelo estático, Lemaître (1927) se basó en consideraciones físicas para defender la idea de una posible, real, expansión del Universo.Ahora bien, todos estos modelos surgían de soluciones de las ecuaciones cosmológicas; esto es, se trataba de posibilidades teóricas. La cuestión de cómo es realmente el Universo –¿estático?, ¿en expansión?– quedaba aún por dilucidar, para lo cual el único juez aceptable era la observación.
La gloria imperecedera de haber encontrado evidencia experimental a favor de que el Universo se expande pertenece al astrofísico estadounidense Edwin Hubble (1889-1953), quien se benefició del magnífico telescopio reflector con un espejo de 2,5 metros de diámetro que existía en el observatorio de Monte Wilson (California) en el que trabajaba, al igual que de unos excelentes indicadores de distancia, las cefeidas, estrellas de luminosidad variable en las que se verifica una relación lineal entre la luminosidad intrínseca y el periodo de cómo varía esa luminosidad (Hubble 1929; Hubble y Humason 1931). Y si, como Hubble sostuvo, el Universo se expandía, esto quería decir que debió existir en el pasado (estimado inicialmente en unos diez mil millones de años, más tarde en quince mil millones y en la actualidad en unos trece mil setecientos millones) un momento en el que toda la materia habría estado concentrada en una pequeña extensión: el «átomo primitivo» de Lemaître, o, una idea que tuvo más éxito, el Big Bang (Gran Estallido).
Nació así una visión del Universo que en la actualidad forma parte de la cultura más básica. No fue, sin embargo, siempre así. De hecho, en 1948, cuando terminaba la primera mitad del siglo, tres físicos y cosmólogos instalados en Cambridge: Fred Hoyle (1915-2001), por un lado, y Hermann Bondi (1919-2005) y Thomas Gold (1920-2004), por otro (los tres habían discutido sus ideas con anterioridad a la publicación de sus respectivos artículos), dieron a conocer un modelo diferente del Universo en expansión: la cosmología del estado estable, que sostenía que el Universo siempre ha tenido y tendrá la misma forma (incluyendo densidad de materia, lo que, debido a la evidencia de la expansión del Universo, obligaba a introducir la creación de materia para que un «volumen» de Universo tuviese siempre el mismo contenido aunque estuviese dilatándose); en otras palabras: que el Universo no tuvo ni un principio ni tendrá un final (2).
A pesar de lo que hoy podamos pensar, imbuidos como estamos en «el paradigma del Big Bang», la cosmología del estado estable ejerció una gran influencia durante la década de 1950. Veremos que fue en la segunda mitad del siglo cuando finalmente fue desterrada (salvo para unos pocos fieles, liderados por el propio Hoyle)

Física cuántica

La segunda gran revolución a la que hacía referencia es la de la física cuántica. Aunque no es rigurosamente exacto, hay sobrados argumentos para considerar que el punto de partida de esta revolución tuvo lugar en 1900, cuando mientras estudiaba la distribución de energía en la radiación de un cuerpo negro, el físico alemán Max Planck (1858-1947) introdujo la ecuación E=h•? donde E es, como en el caso de expresión relativista, la energía, h una constante universal (denominada posteriormente «constante de Planck») y ? la frecuencia de la radiación involucrada (Planck 1900). Aunque él se resistió de entrada a apoyar la idea de que este resultado significaba que de alguna manera la radiación electromagnética (esto es, la luz, una onda continua como se suponía hasta entonces) se podía considerar también como formada por «corpúsculos» (posteriormente denominados «fotones») de energía h•?, semejante implicación terminó imponiéndose, siendo en este sentido Einstein (1905b) decisivo. Se trataba de la «dualidad onda-corpúsculo».
Durante un cuarto de siglo, los físicos pugnaron por dar sentido a los fenómenos cuánticos, entre los que terminaron integrándose también la radiactividad, la espectroscopia y la física atómica. No es posible aquí ofrecer ni siquiera un esbozo del número de científicos que trabajaron en este campo, de las ideas que manejaron y los conceptos que introdujeron, ni de las observaciones y experimentos realizados. Únicamente puedo decir que un momento decisivo en la historia de la física cuántica se produjo en 1925, cuando un joven físico alemán de nombre Werner Heisenberg (1901-1976) desarrolló la primera formulación coherente de una mecánica cuántica: la mecánica cuántica matricial. Poco después, en 1926, el austriaco Erwin Schrödinger (1887-1961) encontraba una nueva versión (pronto se comprobó que ambas eran equivalentes): la mecánica cuántica ondulatoria.
Si la exigencia de la constancia de velocidad de la luz contenida en uno de los dos axiomas de la teoría de la relatividad especial, la dependencia de las medidas espaciales y temporales del movimiento del observador o la curvatura dinámica del espacio-tiempo constituían resultados no sólo innovadores sino sorprendentes, que violentan nuestro «sentido común», mucho más chocantes resultaron ser aquellos contenidos o deducidos en la mecánica cuántica, de los que es obligado recordar al menos dos: (1) la interpretación de la función de onda de la ecuación de Schrödinger debida a Max Born (1882-1970), según la cual tal función –el elemento básico en la física cuántica para describir el fenómeno considerado– representa la probabilidad de que se dé un resultado concreto (Born 1926); y (2) el principio de incertidumbre (Heisenberg 1927), que sostiene que magnitudes canónicamente conjugadas (como la posición y la velocidad, o la energía y el tiempo) sólo se pueden determinar simultáneamente con una indeterminación característica (la constante de Planck): ?x•?p?h, donde x representa la posición y p el momento lineal (el producto de la masa por la velocidad). A partir de este resultado, al final de su artículo Heisenberg extraía una conclusión con implicaciones filosóficas de largo alcance: «En la formulación fuerte de la ley causal “Si conocemos exactamente el presente, podemos predecir el futuro”, no es la conclusión, sino más bien la premisa la que es falsa. No podemos conocer, por cuestiones de principio, el presente en todos sus detalles». Y añadía: «En vista de la íntima relación entre el carácter estadístico de la teoría cuántica y la imprecisión de toda percepción, se puede sugerir que detrás del universo estadístico de la percepción se esconde un mundo “real” regido por la causalidad. Tales especulaciones nos parecen –y hacemos hincapié en esto– inútiles y sin sentido. Ya que la física tiene que limitarse a la descripción formal de las relaciones entre percepciones».
La mecánica cuántica de Heisenberg y Schrödinger abrió un mundo nuevo, científico al igual que tecnológico, pero no era en realidad sino el primer paso. Existían aún muchos retos pendientes, como, por ejemplo, hacerla compatible con los requisitos de la teoría de la relatividad especial, o construir una teoría del electromagnetismo, una electrodinámica, que incorporase los requisitos cuánticos. Si Einstein había enseñado, y la física cuántica posterior incorporado en su seno, que la luz, una onda electromagnética, estaba cuantizada, esto es, que al mismo tiempo que una onda también era una «corriente» de fotones, y si la electrodinámica que Maxwell había construido en el siglo xix describía la luz únicamente como una onda, sin ninguna relación con la constante de Planck, entonces era evidente que algo fallaba, que también había que cuantizar el campo electromagnético.
No fue necesario, sin embargo, esperar a la segunda mitad del siglo xx para contar con una electrodinámica cuántica. Tal teoría, que describe la interacción de partículas cargadas mediante su interacción con fotones, fue construida en la década de 1940, de manera independiente, por un físico japonés y dos estadounidenses: Sin-itiro Tomonaga (1906-1979), Julian Schwinger (1918-1984) y Richard Feynman (1918-1988) (3).
La electrodinámica cuántica representó un avance teórico considerable, pero tampoco significaba, ni mucho menos, el final de la historia cuántica; si acaso, ascender un nuevo peldaño de una escalera cuyo final quedaba muy lejos. En primer lugar porque cuando la teoría de Tomonaga-Schwinger-Feynman fue desarrollada ya estaba claro que además de las tradicionales fuerzas electromagnética y gravitacional existen otras dos: la débil, responsable de la existencia de la radiactividad, y la fuerte, que unía a los constituyentes (protones y neutrones) de los núcleos atómicos (4). Por consiguiente, no bastaba con tener una teoría cuántica de la interacción electromagnética, hacía falta además construir teorías cuánticas de las tres restantes fuerzas.
Relacionado íntimamente con este problema, estaba la proliferación de partículas «elementales». El electrón fue descubierto, como componente universal de la materia, en 1897 por Joseph John Thomson (1856-1940). El protón (que coincide con el núcleo del hidrógeno) fue identificado definitivamente gracias a experimentos realizados en 1898 por Wilhelm Wien (1864-1928) y en 1910 por Thomson. El neutrón (partícula sin carga) fue descubierto en 1932 por el físico inglés James Chadwick (1891-1974). Y en diciembre de este año, el estadounidense Carl Anderson (1905-1991) hallaba el positrón (idéntico al electrón salvo en que su carga es opuesta, esto es, positiva), que ya había sido previsto teóricamente en la ecuación relativista del electrón, introducida en 1928 por uno de los pioneros en el establecimiento de la estructura básica de la mecánica cuántica, el físico inglés Paul Dirac (1902-1984).
Electrones, protones, neutrones, fotones y positrones no serían sino los primeros miembros de una extensa familia (mejor, familias) que no hizo más que crecer desde entonces, especialmente tras la entrada en funcionamiento de unas máquinas denominadas «aceleradores de partículas». En el establecimiento de esta rama de la física, el ejemplo más característico de lo que se ha venido en llamar Big Science (Gran Ciencia), ciencia que requiere de enormes recursos económicos y de equipos muy numerosos de científicos y técnicos, nadie se distinguió más que Ernest O. Lawrence (1901-1958), quien a partir de la década de 1930 desarrolló en la Universidad de Berkeley (California) un tipo de esos aceleradores, denominados «ciclotrones», en los que las partículas «elementales» se hacían girar una y otra vez, ganando en cada vuelta energía, hasta hacerlas chocar entre sí, choques que se fotografiaban para luego estudiar sus productos, en los que aparecían nuevas partículas «elementales». Pero de esta rama de la física, denominada «de altas energías», volveré a hablar más adelante, cuando trate de la segunda mitad del siglo xx; ahora basta con decir que su origen se encuentra en la primera mitad de esa centuria.
Establecido el marco general, es hora de pasar a la segunda mitad del siglo, a la que está dedicada el presente artículo. Y comenzaré por el escenario más general: el Universo, en el que la interacción gravitacional desempeña un papel central, aunque, como veremos, no exclusivo, particularmente en los primeros instantes de su existencia.

EL MUNDO DE LA GRAVITACIÓN

Evidencias de la expansión del Universo la radiación cósmica de microondas

Señalé antes que no todos los físicos, astrofísicos y cosmólogos entendieron la expansión descubierta por Hubble como evidencia de que el Universo tuvo un comienzo, un Big Bang. La cosmología del estado estable de Hoyle-Bondi-Gold proporcionaba un marco teórico en el que el Universo había sido siempre igual, y esta idea fue bien aceptada por muchos. Sin embargo, en la década siguiente a la de su formulación, la de 1950, comenzó a tener problemas. El que fuese así se debió no a consideraciones teóricas, sino a las nuevas posibilidades observacionales que llegaron de la mano del desarrollo tecnológico. Es éste un punto que merece la pena resaltar: eso que llamamos ciencia es producto de una delicada combinación entre teoría y observación. No hay, efectivamente, ciencia sin la construcción de sistemas (teorías) que describen conjuntos de fenómenos, pero mucho menos la hay sin observar lo que realmente sucede en la naturaleza (simplemente, no somos capaces de imaginar cómo se comporta la naturaleza). Y para observar se necesitan instrumentos; cuanto más poderosos –esto es, capaces de mejorar las potencialidades de nuestros sentidos–, mejor. Y esto equivale a desarrollo tecnológico.
Sucede que la segunda mitad del siglo xx fue una época en la que la tecnología experimentó un desarrollo gigantesco, mucho mayor que en el pasado, y esto repercutió muy positivamente en el avance de la ciencia, en general, y de la astrofísica y cosmología en particular. En lo relativo a los problemas que afectaron a la cosmología del estado estable, a los que antes me refería, tales dificultades nacieron del desarrollo de la radioastronomía, una disciplina que había dado sus primeros pasos en la década de 1930, gracias a los trabajos de Karl Jansky (1905-1950), un ingeniero eléctrico que trabajaba para los laboratorios Bell (estrictamente Bell Telephone Laboratories), el «departamento» de American Telephone and Telegraph Corporation encargado de la investigación y el desarrollo. En 1932, mientras buscaba posibles fuentes de ruido en emisiones de radio, Jansky detectó emisiones eléctricas procedentes del centro de nuestra galaxia. A pesar de la importancia que visto retrospectivamente asignamos ahora a tales observaciones, Jansky no continuó explorando las posibilidades que había abierto; al fin y al cabo, el mundo de la investigación fundamental no era el suyo.
No inmediatamente, pero sí pronto aquellas antenas primitivas se convirtieron en refinados radiotelescopios; habitualmente discos de cada vez mayor diámetro, que recogían radiación electromagnética procedente del espacio. La importancia de estos instrumentos para el estudio del Universo es obvia: los telescopios ópticos en los que se basaba hasta entonces la astrofísica únicamente estudiaban un rango muy pequeño del espectro electromagnético; eran, por así decir, casi «ciegos».
Uno de los primeros lugares en los que floreció institucionalmente la radioastronomía fue en Cambridge (Inglaterra). Fue allí donde Martin Ryle (1918-1984), continuó decididamente por la senda esbozada por Jansky. En semejante tarea se vio ayudado por los conocimientos que había obtenido durante la Segunda Guerra Mundial (trabajó entonces en el Telecommunications Research Establishment gubernamental, más tarde bautizado como Royal Radar Establishment), así como por la mejora que esa conflagración había significado para la instrumentación electrónica. Utilizando radiotelescopios, algunos de cuyos componentes diseñó él mismo, Ryle identificó en 1950 cincuenta radio-fuentes, número que aumentó radicalmente cinco años más tarde, cuando llegó a las dos mil. Uno de sus hallazgos fue descubrir una radio-fuente en la constelación de Cygnus, situada a 500 años-luz de la Vía Láctea. Al ver más lejos en el espacio, estaba viendo también más atrás en el tiempo (las señales que recibía habían sido emitidas hacía mucho, el tiempo que les había costado llegar a la Tierra). Con sus observaciones se estaba, por tanto, adentrando en la historia pasada del universo. Hubble había dado el primer gran paso en el camino de la cosmología observacional; Ryle –que recibió el Premio Nobel de Física en 1974– el segundo.
Gracias a sus observaciones con radio-fuentes, Ryle llegó a conclusiones que iban en contra de la cosmología del estado estable, reivindicando así la del Big Bang. Al analizar las curvas que relacionaban el número de radio-estrellas por unidad de ángulo sólido con la intensidad que emiten, Ryle (1955) concluía que no veía la manera en la que las observaciones se pudiesen explicar en términos de la teoría del estado estable».
Mucho más concluyente a favor de la existencia en el pasado de un gran estallido fue otro descubrimiento, uno de los más célebres e importantes en toda la historia de la astrofísica y cosmología: el del fondo de radiación de microondas.
En 1961, E. A. Ohm, un físico de una de las instalaciones de los laboratorios Bell, situada en Crawford Hill, New Jersey, construyó un radiómetro para recibir señales de microondas procedentes del globo Echo (un reflector de señales electromagnéticas lanzado en 1960) de la NASA. No era una casualidad: los laboratorios Bell querían comenzar a trabajar en el campo de los satélites de comunicación. En observaciones realizadas en la longitud de onda de 11 cm., Ohm encontró un exceso de temperatura de 3,3°K (grados kelvin) en la antena, pero este resultado apenas atrajo alguna atención (5).
Otro de los instrumentos que se desarrollaron por entonces en Crawford Hill fue una antena en forma de cuerno, una geometría que reducía las interferencias. El propósito inicial era utilizarla para comunicarse, vía el globo Echo, con el satélite Telstar de la compañía (la antena debía ser muy precisa, ya que debido a la forma del globo, las señales que incidiesen en él se difundirían mucho). En 1963, sabiendo de la existencia de esta antena, Robert Wilson (n. 1936) abandonó su puesto posdoctoral en el Instituto Tecnológico de California (Caltech) para aceptar un trabajo en los laboratorios Bell. Arno Penzias (n. 1933), un graduado de la Universidad de Columbia (Nueva York) tres años mayor que Wilson, ya llevaba por entonces dos años en los laboratorios. Afortunadamente, aquel mismo año la antena, pequeña pero de gran sensibilidad, pudo ser utilizada para estudios de radioastronomía, ya que la compañía decidió abandonar el negocio de comunicaciones vía satélite. Realizando medidas para una longitud de onda de 7,4 centímetros, Penzias y Wilson encontraron una temperatura de 7,5°K, cuando debía haber sido únicamente de 3,3°K. Además, esta radiación (o temperatura) suplementaria, que se creía efecto de algún ruido de fondo, resultó ser independiente de la dirección en la que se dirigiese la antena. Los datos obtenidos indicaban que lo que estaban midiendo no tenía origen ni atmosférico, ni solar, ni galáctico. Era un misterio.
Después de descartar que los ruidos proviniesen de la propia antena, la única conclusión posible era que tenía algo que ver con el cosmos, aunque no se sabía cuál podía ser la causa. La respuesta a esta cuestión llegó de algunos colegas de la cercana Universidad de Princeton, algunos de los cuales, como James Peebles (n. 1935), ya habían considerado la idea de que si hubo un Big Bang debería existir un fondo de ruido remanente del universo primitivo, un ruido que, en forma de radiación, correspondería a una temperatura mucho más fría (debido al enfriamiento asociado a la expansión del Universo) que la enorme que debió producirse en aquella gran explosión. Las ideas de Peebles habían animado a su colega en Princeton Robert Dicke (1916-1995) a iniciar un experimento destinado a encontrar esa radiación de fondo cósmico, tarea en la que se les adelantaron, sin pretenderlo, Penzias y Wilson. Aun así, fue el grupo de Princeton el que suministró la interpretación de las observaciones de Penzias y Wilson (1965), que éstos publicaron sin hacer ninguna mención a sus posibles implicaciones cosmológicas. La temperatura correspondiente a esa radiación situada en el dominio de las microondas corresponde según las estimaciones actuales a unos 2,7°K (en su artícu-lo de 1965, Penzias y Wilson daban un valor de 3,5°K).
El que Penzias y Wilson detectasen el fondo de radiación de microondas en un centro dedicado a la investigación industrial, en donde se disponía y desarrollaban nuevos instrumentos es significativo. Expresa perfectamente la ya mencionada necesidad de instrumentos más precisos, de nueva tecnología, para avanzar en el conocimiento del Universo. Según se dispuso de esta tecnología, fue ampliándose la imagen del cosmos. Y así llegaron otros descubrimientos, de los que destacaré dos: púlsares y cuásares.

Púlsares y cuásares

En 1963, un radioastrónomo inglés, Cyril Hazard, que trabajaba en Australia, estableció con precisión la posición de una poderosa radio-fuente, denominada 3C273. Con estos datos, el astrónomo holandés Maarten Schmidt (n. 1929), del observatorio de Monte Palomar (California), localizó ópticamente el correspondiente emisor, encontrando que las líneas del espectro de 3C273 estaban desplazadas hacia el extremo del rojo en una magnitud que revelaba que se alejaba de la Tierra a una velocidad enorme: 16% de la velocidad de la luz. Utilizando la ley de Hubble, que afirma que la distancia de las galaxias entre sí son directamente proporcionales a su velocidad de recesión, se deducía que 3C273 estaba muy alejada, lo que a su vez implicaba que se trataba de un objeto extremadamente luminoso, más de cien veces que una galaxia típica. Fueron bautizados como quasi-stellar sources (fuentes casi-estelares), esto es, quasars (cuásares), y se piensa que se trata de galaxias con núcleos muy activos.
Desde su descubrimiento, se han observado varios millones de cuásares, aproximadamente el 10% del número total de galaxias brillantes (muchos astrofísicos piensan que una buena parte de las galaxias más brillantes pasan durante un breve periodo por una fase en la que son cuásares). La mayoría están muy alejados de nuestra galaxia, lo que significa que la luz que se ve ha sido emitida cuando el universo era mucho más joven. Constituyen, por consiguiente, magníficos instrumentos para el estudio de la historia del Universo.
En 1967, Jocelyn S. Bell (n. 1943), Anthony Hewish (n. 1924) y los colaboradores de éste en Cambridge construyeron un detector para observar cuásares en las frecuencias radio. Mientras lo utilizaba, Bell observó una señal que aparecía y desaparecía con gran rapidez y regularidad. Tan constante era el periodo que parecía tener un origen artificial (¿acaso una fuente extraterrestre inteligente?). No obstante, tras una cuidadosa búsqueda Bell y Hewish concluyeron que estos «púlsares», como finalmente fueron denominados, tenían un origen astronómico (Hewish, Bell, Pilkington, Scott y Collins 1968) (6). Ahora bien, ¿qué eran estas radio-fuentes tan regulares? La interpretación teórica llegó poco después, de la mano de Thomas Gold, uno de los «padres» de la cosmología del estado estable, reconvertido ya al modelo del Big Bang. Gold (1968) se dio cuenta de que los periodos tan pequeños implicados (del orden de 1 o 3 segundos en los primeros púlsares detectados) exigían una fuente de tamaño muy pequeño. Las enanas blancas eran demasiado grandes para rotar o vibrar con tal frecuencia, pero no así las estrellas de neutrones (7). Pero ¿el origen de las señales recibidas se debía a vibraciones o a rotaciones de estas estrellas? No a vibraciones, porque en estrellas de neutrones éstas eran demasiado elevadas (alrededor de mil veces por segundo) para explicar los periodos de la mayoría de los pulsares. Por consiguiente, los púlsares tenían que ser estrellas de neutrones en rotación. En la actualidad, cuando se han descubierto púlsares que emiten rayos X o gamma (incluso algunos luz en el espectro óptico), también se admiten otros mecanismos para la producción de la radiación que emiten; por ejemplo, la acreción de materia en sistemas dobles.
Además de su interés astrofísico, los púlsares cumplen otras funciones. Una de ellas ha sido utilizarlos para comprobar la predicción de la relatividad general de que masas aceleradas emiten radiación gravitacional (un fenómeno análogo al que se produce con cargas eléctricas: la radiación electromagnética).
La confirmación de que, efectivamente, la radiación gravitacional existe derivó del descubrimiento, en 1974, del primer sistema formado por dos púlsares interaccionando entre sí (denominado PSR1913+16), por el que Russell Hulse (n. 1950) y Joseph Taylor (n. 1941) recibieron en 1993 el Premio Nobel de Física. En 1978, después de varios años de observaciones continuadas de ese sistema binario, pudo concluirse que las órbitas de los púlsares varían acercándose entre sí, un resultado que se interpreta en términos de que el sistema pierde energía debido a la emisión de ondas gravitacionales (Taylor, Fowler y McCulloch 1979). Desde entonces han sido descubiertos otros púlsares en sistemas binarios, pero lo que aún resta es detectar la radiación gravitacional identificando su paso por instrumentos construidos e instalados en la Tierra, una empresa extremadamente difícil dado lo minúsculo de los efectos implicados: se espera que las ondas gravitacionales que lleguen a la Tierra (originadas en algún rincón del Universo en el que tenga lugar un suceso extremadamente violento) produzcan distorsiones en los detectores de no más de una parte en 1021; esto es, una pequeña fracción del tamaño de un átomo. Existen ya operativos diseñados para lograrlo: el sistema de 4 kilómetros de detectores estadounidenses denominado LIGO, por sus siglas inglesas, Laser Interferometric Gravitational wave Observatories.
También los cuásares resultan ser objetos muy útiles para estudiar el Universo en conjunción con la relatividad general. Alrededor de uno entre quinientos cuásares se ven implicados en un fenómeno relativista muy interesante: la desviación de la luz que emiten debido al efecto gravitacional de otras galaxias situadas entre el cuásar en cuestión y la Tierra, desde donde se observa este fenómeno, denominado «lentes gravitacionales» (8). El efecto puede llegar a ser tan grande que se observan imágenes múltiples de un solo cuásar.
En realidad, las lentes gravitacionales no son producidas únicamente por cuásares; también lo son por grandes acumulaciones de masas (como cúmulos de galaxias) que al desviar la luz procedente de, por ejemplo, galaxias situadas tras ellas (con respecto a nosotros) dan lugar, en lugar de a una imagen más o menos puntual, a un halo de luz, a una imagen «desdoblada». Fueron observados por primera vez en 1979, cuando Walsh, Carswell y Weyman (1979) descubrieron una imagen múltiple de un cuasar en 0957+561. Posteriormente, se han tomado fotografías con el telescopio espacial Hubble de un cúmulo de galaxias situado a unos mil millones de años-luz de distancia en las que además de las galaxias que forman el cúmulo se observan numerosos arcos (trozos de aros) que se detectan con mayor dificultad debido a ser más débiles luminosamente. Estos arcos son en realidad las imágenes de galaxias mucho más alejadas de nosotros que las que constituyen el propio cúmulo, pero que observamos mediante el efecto de lente gravitacional (el cúmulo desempeña el papel de la lente que distorsiona la luz procedente de tales galaxias). Además de proporcionar nuevas evidencias en favor de la relatividad general, estas observaciones tienen el valor añadido de que la magnitud de la desviación y distorsión que se manifiesta en estos arcos luminosos es mucho mayor del que se esperaría si no hubiese nada más en el cúmulo que las galaxias que vemos en él. De hecho, las evidencias apuntan a que estos cúmulos contienen entre cinco y diez veces más materia de la que se ve. ¿Se trata de la materia oscura de la que hablaré más adelante?
Para muchos —al menos hasta que el problema de la materia y energía oscuras pasó a un primer plano— la radiación de fondo, los púlsares y los cuásares, de los que me he ocupado en esta sección, constituyen los tres descubrimientos más importantes en la astrofísica de la segunda mitad del siglo xx. Ciertamente, lo que estos hallazgos nos dicen, especialmente en el caso de púlsares y cuásares, es que el Universo está formado por objetos mucho más sorprendentes, y sustancialmente diferentes, de los que se había supuesto existían durante la primera mitad del siglo xx. Ahora bien, cuando se habla de objetos estelares sorprendentes o exóticos, es inevitable referirse a los agujeros negros, otro de los «hijos» de la teoría de la relatividad general.

Agujeros negros

Durante décadas tras su formulación en 1915 y haber sido explotadas las predicciones de la teoría einsteiniana de la gravitación con relación al Sistema Solar (movimiento del perihelio de Mercurio, curvatura de los rayos de luz y desplazamiento gravitacional de las líneas espectrales), la relatividad general estuvo en gran medida en manos de los matemáticos, hombres como Hermann Weyl (1885-1955), Tullio Levi-Civita (1873-1941), Jan Arnouldus Schouten (1883-1971), Cornelius Lanczos (1892-1974) o André Lichnerowicz (1915-1998). La razón era, por un lado, la dificultad matemática de la teoría, y por otro el que apenas existían situaciones en las que se pudiese aplicar. Su dominio era el Universo y explorarlo requería de unos medios tecnológicos que no existían entonces (también, por supuesto, era preciso una financiación importante). Este problema fue desapareciendo a partir de finales de la década de 1960, y hoy se puede decir que la relatividad general se ha integrado plenamente en la física experimental, incluyendo apartados que nos son tan próximos como el Global Positioning System (GPS). Y no sólo en la física experimental correspondiente a los dominios astrofísico y cosmológico, también, como veremos más adelante, se ha asociado a la física de altas energías.
Y en este punto, como uno de los objetos estelares más sorprendentes y atractivos vinculados a la relatividad general cuya existencia se ha descubierto en las últimas décadas, es necesario referirse a los agujeros negros, que de hecho han ido más allá del mundo puramente científico, afincándose asimismo en el social.
Estos objetos pertenecen, como digo, al dominio teórico de la teoría de la relatividad general, aunque sus equivalentes newtonianos habían sido propuestos –y olvidados– mucho antes por el astrónomo británico John Michell (c. 1724-1793) en 1783, y por Pierre Simon Laplace (1749-1827) en 1795. Su exoticidad proviene de que involucran nociones tan radicales como la destrucción del espacio-tiempo en puntos denominados «singularidades» (9).
El origen de los estudios que condujeron a los agujeros negros se remonta a la década de 1930, cuando el físico de origen hindú, Subrahamanyan Chandrasekhar (1910-1995), y el ruso Lev Landau (1908-1968), mostraron que en la teoría de la gravitación newtoniana un cuerpo frío de masa superior a 1,5 veces la del Sol no podría soportar la presión producida por la gravedad (Chandrasekhar 1931; Landau 1932). Este resultado condujo a la pregunta de qué sucedería según la relatividad general. Robert Oppenheimer (1904-1967), junto a dos de sus colaboradores, George M. Volkoff y Hartland Snyder (1913-1962) demostraron en 1939 que una estrella de semejante masa se colapsaría hasta reducirse a una singularidad, esto es, a un punto de volumen cero y densidad infinita (Oppenheimer y Volkoff 1939; Oppenheimer y Snyder 1939).
Pocos prestaron atención, o creyeron, en las conclusiones de Oppenheimer y sus colaboradores y su trabajo fue ignorado hasta que el interés en los campos gravitacionales fuertes fue impulsado por el descubrimiento de los cuásares y los púlsares. Un primer paso lo dieron en 1963 los físicos soviéticos, Evgenii M. Lifshitz (1915-1985) e Isaak M. Khalatnikov (n. 1919), que comenzaron a estudiar las singularidades del espacio-tiempo relativista. Siguiendo la estela del trabajo de sus colegas soviéticos e introduciendo poderosas técnicas matemáticas, a mediados de la década de 1960 el matemático y físico británico Roger Penrose (n. 1931) y el físico Stephen Hawking (n. 1942), demostraron que las singularidades eran inevitables en el colapso de una estrella si se satisfacían ciertas condiciones (10).
Un par de años después de que Penrose y Hawking publicasen sus primeros artículos, la física de las singularidades del espacio-tiempo se convirtió en la de los «agujeros negros», un término afortunado que no ha hecho sino atraer la atención popular sobre este ente físico. El responsable de esta aparentemente insignificante pequeña revolución terminológica fue el físico estadounidense, John A. Wheeler (1911-2008). Él mismo explicó la génesis del término de la forma siguiente (Wheeler y Ford 1998, 296-297):
En el otoño de 1967, Vittorio Canuto, director administrativo del Instituto Goddard para Estudios Espaciales de la NASA en el 2880 de Broadway, en Nueva York, me invitó a dar una conferencia para considerar posibles interpretaciones de las nuevas y sugerentes evidencias que llegaban de Inglaterra acerca de los púlsares. ¿Qué eran estos púlsares? ¿Enanas blancas que vibraban? ¿Estrellas de neutrones en rotación? ¿Qué? En mi charla argumenté que debíamos considerar la posibilidad de que en el centro de un púlsar se encontrase un objeto completamente colapsado gravitacionalmente. Señalé que no podíamos seguir diciendo, una y otra vez, «objeto completamente colapsado gravitacionalmente». Se necesitaba una frase descriptiva más corta. ¿Qué tal agujero negro?, preguntó alguien de la audiencia. Yo había estado buscando el término adecuado durante meses, rumiándolo en la cama, en la bañera, en mi coche, siempre que tenía un momento libre. De repente, este nombre me pareció totalmente correcto. Cuando, unas pocas semanas después, el 29 de diciembre de 1967, pronuncié la más formal conferencia Sigma Xi-Phi Kappa en la West Ballroom del Hilton de Nueva York, utilicé este término, y después lo incluí en la versión escrita de la conferencia publicada en la primavera de 1968.
El nombre era sugerente y permanecería, pero la explicación era errónea (como ya he señalado un púlsar está propulsado por una estrella de neutrones).
Aunque la historia de los agujeros negros tiene sus orígenes, como se ha indicado, en los trabajos de índole física de Oppenheimer y sus colaboradores, durante algunos años predominaron los estudios puramente matemáticos, como los citados de Penrose y Hawking. La idea física subyacente era que debían representar objetos muy diferentes a cualquier otro tipo de estrella, aunque su origen estuviese ligado a éstas. Surgirían cuando, después de agotar su combustible nuclear, una estrella muy masiva comenzase a contraerse irreversiblemente debido a la fuerza gravitacional. Así, llegaría un momento en el que se formaría una región (denominada «horizonte») que únicamente dejaría entrar materia y radiación, sin permitir que saliese nada, ni siquiera luz (de ahí lo de «negro»): cuanto más grande es, más come, y cuanto más come, más crece. En el centro del agujero negro está el punto de colapso. De acuerdo con la relatividad general, allí la materia que una vez compuso la estrella es comprimida y expulsada aparentemente «fuera de la existencia».
Evidentemente, «fuera de la existencia» no es una idea aceptable. Ahora bien, existe una vía de escape a semejante paradójica solución: la teoría de la relatividad general no es compatible con los requisitos cuánticos, pero cuando la materia se comprime en una zona muy reducida son los efectos cuánticos los que dominarán. Por consiguiente, para comprender realmente la física de los agujeros negros es necesario disponer de una teoría cuántica de la gravitación (cuantizar la relatividad general o construir una nueva teoría de la interacción gravitacional que sí se pueda cuantizar), una tarea aún pendiente en la actualidad, aunque se hayan dado algunos pasos en esta dirección, uno de ellos debido al propio Hawking, el gran gurú de los agujeros negros: la denominada «radiación de Hawking» (Hawking 1975), la predicción de que, debido a procesos de índole cuántica, los agujeros negros no son tan negros como se pensaba, pudiendo emitir radiación (11).
No sabemos, en consecuencia, muy bien qué son estos misteriosos y atractivos objetos. De hecho, ¿existen realmente? La respuesta es que sí. Cada vez hay mayores evidencias en favor de su existencia. La primera de ellas fue consecuencia de la puesta en órbita, el 12 de diciembre de 1970, desde Kenia, para conmemorar la independencia del país, de un satélite estadounidense bautizado como Uhuru, la palabra suajili para «Libertad». Con este instrumento se pudo determinar la posición de las fuentes de rayos X más poderosas. Entre las 339 fuentes identificadas, figura Cygnus X-1, una de las más brillantes de la Vía Láctea, en la región del Cisne. Esta fuente se asoció posteriormente a una estrella supergigante azul visible de una masa 13 veces la del Sol y una compañera invisible cuya masa se estimó –analizando el movimiento de su compañera– en 7 masas solares, una magnitud demasiado grande para ser una enana blanca o una estrella de neutrones, por lo que se considera un agujero negro. No obstante, algunos sostienen que la masa de este objeto invisible es de 3 masas solares, con lo que podría ser una estrella de neutrones. En la actualidad se acepta generalmente que existen agujeros negros supermasivos en el centro de aquellas galaxias (aproximadamente el 1% del total de galaxias del Universo) cuyo núcleo es más luminoso que el resto de toda la galaxia. De manera indirecta se han determinado las masas de esos superagujeros negros en más de doscientos casos, pero sólo en unos pocos de manera directa; uno de ellos está en la propia Vía Láctea.

Inflación y «arrugas en el tiempo»

El estudio del Universo constituye un rompecabezas descomunal. Medir ahí distancias, masas y velocidades, tres datos básicos, es, obviamente, extremadamente complejo: no podemos hacerlo directamente ni tampoco podemos «ver» todo con precisión. Con los datos de que se disponía, durante un tiempo bastó con el modelo que suministraba la solución de Robertson-Walker-Friedmann de la relatividad general, que representa el Universo expandiéndose con una aceleración que depende de su contenido de masa-energía. Pero existían problemas para la cosmología del Big Bang que fueron haciéndose cada vez más patentes.
Uno de ellos era si esa masa-energía es tal que el Universo continuará expandiéndose siempre o si es lo suficientemente grande como para que la atracción gravitacional termine venciendo a la fuerza del estallido inicial haciendo que, a partir de un momento, comience a contraerse para finalmente llegar a un Big Crunch (Gran Contracción). Otro problema residía en la gran uniformidad que se observa en la distribución de masa del Universo si uno toma como unidad de medida escalas de unos 300 millones de años-luz o más (a pequeña escala, por supuesto, el Universo, con sus estrellas, galaxias, cúmulos de galaxias y enormes vacíos interestelares, no es homogéneo). El fondo de radiación de microondas es buena prueba de esa macro-homogeneidad. Ahora bien, en la teoría estándar del Big Bang es difícil explicar esta homogeneidad mediante los fenómenos físicos conocidos; además, si tenemos en cuenta que la transmisión de información sobre lo que sucede entre diferentes puntos del espacio-tiempo no puede ser transmitida con una velocidad superior a la de la luz, sucede que en los primeros momentos de existencia del Universo no habría sido posible que regiones distintas «llegasen a un consenso», por decirlo de alguna manera, acerca de cuál debería ser la densidad media de materia y radiación (12).
Para resolver este problema se propuso la idea del Universo inflacionario, según la cual en los primeros instantes de vida del Universo se produjo un aumento gigantesco, exponencial, en la velocidad de su expansión. En otras palabras, el miniUniverso habría experimentado un crecimiento tan rápido que no habría habido tiempo para que se desarrollasen procesos físicos que diesen lugar a distribuciones inhomogéneas. Una vez terminada la etapa inflacionaria, el Universo habría continuado evolucionando de acuerdo con el modelo clásico del Big Bang.
En cuanto a quiénes fueron los científicos responsables de la teoría inflacionaria, los principales nombres que hay que citar son los del estadounidense Alan Guth (n. 1947) y el soviético Andrei Linde (n. 1948) (13). Pero más que nombres concretos, lo que me interesa resaltar es que no es posible comprender esta teoría al margen de la física de altas energías (antes denominada de partículas elementales), de la que me ocuparé más adelante; en concreto de las denominadas teorías de gran unificación (Grand Unified Theories; GUT), que predicen que tendría que producirse una transición de fase a temperaturas del orden de 1027 grados Kelvin (14). Aquí tenemos una muestra de uno de los fenómenos más importantes que han tenido lugar en la física de la segunda mitad del siglo xx: la reunión de la cosmología, la ciencia de «lo grande», y la física de altas energías, la ciencia de «lo pequeño»; naturalmente, el lugar de encuentro ha sido los primeros instantes de vida del Universo, cuando las energías implicadas fueron gigantescas.
Bien, la inflación da origen a un Universo uniforme, pero entonces ¿cómo surgieron las minúsculas inhomogeneidades primordiales de las que habrían nacido, al pasar el tiempo y actuar la fuerza gravitacional, estructuras cósmicas como las galaxias?
Una posible respuesta a esta pregunta era que la inflación podría haber amplificado enormemente las ultramicroscópicas fluctuaciones cuánticas que se producen debido al principio de incertidumbre aplicado a energías y tiempo (?E•?t?h). Si era así, ¿dónde buscar tales inhomogeneidades mejor que en el fondo de radiación de microondas?
La respuesta a esta cuestión vino de los trabajos de un equipo de científicos estadounidenses a cuya cabeza estaban John C. Mather (n. 1946) y George Smoot (n. 1945). Cuando la NASA aprobó en 1982 fondos para la construcción de un satélite –el Cosmic Background Explorer (COBE), que fue puesto en órbita, a 900 kilómetros de altura, en el otoño de 1989– para estudiar el fondo cósmico de microondas, Mather se encargó de coordinar todo el proceso, así como del experimento (en el que utilizó un espectrofotómetro enfriado a 1,5°K) que demostró que la forma del fondo de radiación de microondas se ajustaba a la de una radiación de cuerpo negro a la temperatura de 2,735°K, mientras que Smoot midió las minúsculas irregularidades predichas por la teoría de la inflación. Diez años después, tras haber intervenido en los trabajos más de mil personas y con un coste de 160 millones de dólares, se anunciaba (Mather et al. 1990; Smoot et al. 1992) que el COBE había detectado lo que Smoot denominó «arrugas» del espacio-tiempo, las semillas de las que surgieron las complejas estructuras –como las galaxias– que ahora vemos en el Universo (15). Podemos captar algo de la emoción que sintieron estos investigadores al comprobar sus resultados a través de un libro de divulgación que Smoot publicó poco después, Wrinkles in Time (Arrugas en el tiempo). Escribió allí (Smoot y Davidson 1994, 336):
Estaba contemplando la forma primordial de las arrugas, podía sentirlo en mis huesos. Algunas de las estructuras eran tan grandes que sólo podían haber sido generadas durante el nacimiento del Universo, no más tarde. Lo que tenía ante mí era la marca de la creación, las semillas del Universo presente.
En consecuencia, «la teoría del Big Bang era correcta y la de la inflación funcionaba; el modelo de las arrugas encajaba con la formación de estructuras a partir de la materia oscura fría; y la magnitud de la distribución habría producido las estructuras mayores del Universo actual bajo el influjo del colapso gravitacional a lo largo de 15.000 millones de años».
El COBE fue un magnífico instrumento, pero en modo alguno el único. Los ejemplos en los que astrofísica y tecnología se dan la mano son múltiples. Y no sólo instrumentos instalados en la Tierra, también vehículos espaciales. Así, hace ya bastante que el Sistema Solar se ve frecuentado por satélites con refinados instrumentos que nos envían todo tipo de datos e imágenes. Sondas espaciales como Mariner 10, que observó, en 1973, Venus desde 10.000 kilómetros; Pioneer 10 y Voyager 1 y 2, que entre 1972 y 1977 se adentraron por los alrededores de Júpiter, Saturno, Urano y Plutón, o Galileo, dirigido hacia Júpiter y sus satélites.
Un tipo muy especial de vehículo es el telescopio espacial Hubble, que la NASA puso en órbita, después de un largo proceso, en la primavera de 1990 (16). Situar un telescopio en un satélite artificial significa salvar ese gran obstáculo para recibir radiaciones que es la atmósfera terrestre. Desde su lanzamiento, y especialmente una vez que se corrigieran sus defectos, el Hubble ha enviado y continúa enviando imágenes espectaculares del Universo. Gracias a él, por primera vez disponemos de fotografías de regiones (como la nebulosa de Orión) en las que parece que se está formando una estrella. No es completamente exagerado decir que ha revolucionado nuestro conocimiento del Universo.

Planetas extrasolares

Gracias al avance tecnológico los científicos están siendo capaces de ver nuevos aspectos y objetos del Cosmos, como, por ejemplo, la existencia de sistemas planetarios asociados a estrellas que no sean el Sol. El primer hallazgo en este sentido se produjo en 1992, cuando Alex Wolszczan y Dale Frail descubrieron que al menos dos planetas del tipo de la Tierra orbitan alrededor de un púlsar (Wolszczan y Frail 1992); tres años después, Michel Mayor y Didier Queloz hicieron público que habían descubierto un planeta del tamaño y tipo de Júpiter (un gigante gaseoso) orbitando en torno a la estrella 51 Pegasi (Mayor y Queloz 1995). Desde entonces el número de planetas extrasolares conocidos ha aumentado considerablemente. Y si existen tales planetas, acaso en algunos también se haya desarrollado vida. Ahora bien, aunque la biología que se ocupa del problema del origen de la vida no descarta que en entornos lo suficientemente favorables las combinaciones de elementos químicos puedan producir, debido a procesos sinérgicos, vida, ésta no tiene porque ser vida del tipo de la humana. La biología evolucionista, apoyada en los registros geológicos, ha mostrado que la especie humana es producto del azar evolutivo. Si, por ejemplo, hace 65 millones de años no hubiese chocado contra la Tierra, a una velocidad de aproximadamente treinta kilómetros por segundo, un asteroide o un cometa de unos diez kilómetros de diámetro, produciendo una energía equivalente a la que librarían cien millones de bombas de hidrógeno, entonces acaso no habrían desaparecido (no, desde luego, entonces) una cantidad enorme de especies vegetales y animales, entre las que se encontraban los dinosaurios, que no dejaban prosperar a los, entonces, pequeños mamíferos, que con el paso del tiempo terminarían produciendo, mediante procesos evolutivos, especies como la de los homo sapiens.
Precisamente por semejante aleatoriedad es por lo que no podemos estar seguros de que exista en otros planetas, en nuestra o en otra galaxia, vida inteligente que trate, o haya tratado, de entender la naturaleza construyendo sistemas científicos, y que también se haya planteado el deseo de comunicarse con otros seres vivos que puedan existir en el Universo. Aun así, desde hace tiempo existen programas de investigación que rastrean el Universo buscando señales de vida inteligente. Programas como el denominado SETI, siglas del Search of Extra-Terrestrial Intelligence (Búsqueda de Inteligencia Extraterrestre), que ha utilizado receptores con 250 millones de canales, que realizan alrededor de veinte mil millones de operaciones por segundo.

Materia y energía oscuras

La existencia de planetas extrasolares ciertamente nos conmueve y emociona, pero no es algo «fundamental»; no altera los pilares del edificio científico. Muy diferente es el caso de otros descubrimientos relativos a los contenidos del Universo. Me estoy refiriendo a que tenemos buenas razones para pensar que existe en el Cosmos una gran cantidad de materia que no observamos, pero que ejerce fuerza gravitacional. La evidencia más inmediata procede de galaxias en forma de disco (como nuestra propia Vía Láctea) que se encuentran en rotación. Si miramos a la parte exterior de estas galaxias, encontramos que el gas se mueve de manera sorprendentemente rápida; mucho más rápidamente de lo que debería debido a la atracción gravitacional producida por las estrellas y gases que detectamos en su interior. Otras evidencias proceden de los movimientos internos de cúmulos de galaxias. Se cree que esta materia «oscura» constituye el 30% de toda la materia del Universo. ¿Cuál es su naturaleza? Ése es uno de los problemas; puede tratarse de estrellas muy poco luminosas (como las enanas marrones), de partículas elementales exóticas o de agujeros negros. No podremos entender realmente lo que son las galaxias, o cómo se formaron, hasta que sepamos qué es esa materia oscura. Ni tampoco podremos saber cuál será el destino último de nuestro Universo.
Junto al problema de la materia oscura, otro parecido ha adquirió prominencia en la última década del siglo xx: el de la energía oscura. Estudiando un tipo de supernovas –estrellas que han explotado dejando un núcleo–, un grupo dirigido por Saul Perlmutter (del Laboratorio Lawrence en Berkeley, California) y otro por Brian Schmidt (Observatorios de Monte Stromlo y Siding Spring, en Australia) llegaron a la conclusión de que, al contrario de lo supuesto hasta entonces, la expansión del Universo se está acelerando (Perlmutter et al. 1998; Schmidt et al. 1998). El problema es que la masa del Universo no puede explicar tal aceleración; había que suponer que la gravedad actuaba de una nueva y sorprendente manera: alejando las masas entre sí, no atrayéndolas. Se había supuesto que para propulsar el Big Bang debía de haber existido una energía repulsiva en la creación del Universo, pero no se había pensado que pudiera existir en el Universo ya maduro.
Una nueva energía entraba así en acción, una energía «oscura» que reside en el espacio vacío. Y como la energía es equivalente a la masa, esta energía oscura significa una nueva aportación a la masa total del Universo, distinta, eso sí, de la masa oscura. Se tiene, así, que alrededor del 3% del Universo está formado por masa ordinaria, el 30% de masa oscura y el 67% de energía oscura. En otras palabras: creíamos que conocíamos eso que llamamos Universo y resulta que es un gran desconocido. Porque ni sabemos qué es la materia oscura ni lo que es la energía oscura. Una posible explicación de esta última se podría encontrar en un término que introdujo Einstein en 1916-1917 en las ecuaciones de campo de la relatividad general. Como vimos, al aplicar su teoría de la interacción gravitacional al conjunto del Universo, Einstein buscaba encontrar un modelo que representase un Universo estático y ello le obligó a introducir en sus ecuaciones un nuevo término, la ya citada constante cosmológica, que en realidad representaba un campo de fuerza repulsiva, para compensar el efecto atractivo de la gravitación. Al encontrarse soluciones de la cosmología relativista que representan un Universo en expansión y demostrarse observacionalmente (Hubble) que el Universo se expande, Einstein pensó que no era necesario mantener aquella constante, aunque podía incorporarse sin ningún problema en los modelos expansivos teóricos. Acaso ahora sea necesario resucitarla. Ahora bien, semejante resurrección no se podrá limitar a incluirla de nuevo en la cosmología relativista; esto ya no basta: es preciso que tome su sentido y lugar en las teorías cuánticas que intentan insertar la gravitación en el edificio cuántico; al fin y al cabo la energía oscura es la energía del vacío, y éste tiene estructura desde el punto de vista de la física cuántica. Y puesto que ha salido, una vez más, la física cuántica es hora de pasar a ella, a cómo se desarrolló y consolidó la revolución cuántica durante la segunda mitad del siglo xx.

UN MUNDO CUÁNTICO

La física de altas energías: de los protones, neutrones y electrones a los quarks

Antes, al tratar de la revolución cuántica que surgió en la primera mitad del siglo, me referí a la búsqueda de los componentes básicos de la materia, las denominadas «partículas elementales». Vimos entonces cómo ir más allá de protones, electrones y neutrones, las más básicas de esas partículas, requería energías más elevadas de las que podían proporcionar los «proyectiles» –por ejemplo, partículas alfa– que proporcionaban las emisiones de elementos radiactivos (especialmente el radio), y que fue Ernest Lawrence quien abrió una nueva senda introduciendo y desarrollando unos instrumentos denominados aceleradores de partículas (ciclotrones en su caso), cuyo funcionamiento se basa en acelerar partículas a energías elevadas, haciéndolas chocar luego unas con otras (o con algún blanco predeterminado) para ver qué es lo que se produce en tales choques; esto es, de qué nuevos componentes más pequeños están compuestas esas partículas… si es que lo están (17).
La física de partículas elementales, también llamada, como ya indiqué, de altas energías, ha sido una de las grandes protagonistas de la segunda mitad del siglo xx. Se trata de una ciencia muy cara (es el ejemplo canónico de Big Science, Gran Ciencia, ciencia que requiere de grandes equipos de científicos y técnicos y de grandes inversiones); cada vez, de hecho, más cara, al ir aumentado el tamaño de los aceleradores para poder alcanzar mayores energías. Después de la Segunda Guerra Mundial contó –especialmente en Estados Unidos– con la ayuda del prestigio de la física nuclear, que había suministrado las poderosas bombas atómicas. Limitándome a citar los aceleradores más importantes construidos, señalaré que en 1952 entró en funcionamiento en Brookhaven (Nueva York) el denominado Cosmotrón, para protones, que podía alcanzar 2,8 GeV (18); luego vinieron, entre otros, el Bevatrón (Berkeley, protones; 1954), 3,5 Gev; Dubna (URSS, protones; 1957), 4,5 Gev; Proton-Synchroton (CERN, Ginebra, protones; 1959), 7 GeV; Slac (Stanford; 1966), 20 GeV; PETRA (Hamburgo, electrones y positrones; 1978), 38 GeV; Collider (CERN, protones y antiprotones; 1981), 40 GeV; Tevatron (Fermilab, Chicago, protones y antiprotones), 2.000 GeV, y SLC (Stanford, California, electrones y positrones), 100 GeV, los dos de 1986; LEP (CERN, electrones y positrones; 1987), 100 GeV, y HERA (Hamburgo, electrones y protones; 1992), 310 GeV.
Las siglas CERN corresponden al Centre Européen de Recherches Nucleaires (Centro Europeo de Investigaciones Nucleares), la institución que en 1954 crearon en Ginebra doce naciones europeas para poder competir con Estados Unidos. Con sus aceleradores, el CERN –formado ahora por un número mayor de países (España es uno de ellos)– ha participado de manera destacada en el desarrollo de la física de altas energías. De hecho, en tiempos difíciles para esta disciplina como son los actuales, el CERN acaba de completar (2008) la construcción de un nuevo acelerador, uno en el que los protones chocarán con una energía de 14.000 GeV: el LHC (Large Hadron Collider). Toma así la vieja Europa la antorcha en mantener el «fuego» de esta costosa rama de la física.
¿Por qué he dicho «tiempos difíciles para esta disciplina»? Pues porque debido a su elevado costo, en los últimos años esta rama de la física está pasando por dificultades. De hecho, hace poco sufrió un duro golpe en la que hasta entonces era su patria principal, Estados Unidos. Me estoy refiriendo al Supercolisionador Superconductor (Superconducting Super Collider; SSC). Este gigantesco acelerador, que los físicos de altas energías norteamericanos estimaban indispensable para continuar desarrollando la estructura del denominado modelo estándar, iba a estar formado por un túnel de 84 kilómetros de longitud que debería ser excavado en las proximidades de una pequeña población de 18.000 habitantes, situada a 30 kilómetros al sudoeste de Dallas, en Waxahachie. En el interior de ese túnel miles de bobinas magnéticas superconductoras guiarían dos haces de protones para que, después de millones de vueltas, alcanzaran una energía veinte veces más alta que la que se podía conseguir en los aceleradores existentes. En varios puntos a lo largo del anillo, los protones de los dos haces chocarían, y enormes detectores controlarían lo que sucediera en tales colisiones. El coste del proyecto, que llevaría diez años, se estimó inicialmente en 6.000 millones de dólares.
Después de una azarosa vida, con parte del trabajo de infraestructura ya realizado (la excavación del túnel), el 19 de octubre de 1993 y después de una prolongada, difícil y cambiante discusión parlamentaria, tanto en el Congreso como en el Senado, el Congreso canceló el proyecto. Otros programas científicos –especialmente en el campo de las ciencias biomédicas– atraían la atención de los congresistas y senadores americanos; y también, ¿cómo negarlo?, de la sociedad, más interesada en asuntos que atañen a su salud.
Pero dejemos los aceleradores y vayamos a su producto, a las partículas aparentemente «elementales». Gracias a los aceleradores, su número fue creciendo de tal manera que terminó socavando drásticamente la idea de que la mayoría pudiesen ser realmente elementales en un sentido fundamental. Entre las partículas halladas podemos recordar, por ejemplo, piones y muones de diversos tipos, o las denominadas ?, W o Z, sin olvidar a sus correspondientes antipartículas (19). El número –cientos– resultó ser tan elevado que llegó a hablarse de un «zoo de partículas», un zoo con una fauna demasiado elevada.
A ese zoo se les unió otra partícula particularmente llamativa: los quarks. Su existencia fue propuesta teóricamente en 1964 por los físicos estadounidenses Murray Gell-Mann (n. 1929) y George Zweig (n. 1937). Hasta su aparición en el complejo y variado mundo de las partículas elementales, se pensaba que protones y neutrones eran estructuras atómicas inquebrantables, realmente básicas, y que la carga eléctrica asociada a protones y electrones era una unidad indivisible. Los quarks no obedecían a esta regla, ya que se les asignó cargas fraccionarias. De acuerdo a Gell-Mann (1964) y Zweig (1964), los hadrones, las partículas sujetas a la interacción fuerte, están formados por dos o tres especies de quarks y antiquarks, denominados u (up; arriba), d (down; abajo) y s (strange; extraño), con, respectivamente, cargas eléctricas 2/3, -1/3 y -1/3 la del electrón (20). Así, un protón está formado por dos quarks u y uno d, mientras que un neutrón está formado por dos quarks d y por otro u; son, por consiguiente, estructuras compuestas. Posteriormente, otros físicos propusieron la existencia de tres quarks más: charm (c; 1974), bottom (b; 1977) y top (t; 1995). Para caracterizar esta variedad, se dice que los quarks tienen seis tipos de «sabores» (flavours); además, cada uno de estos seis tipos puede ser de tres clases, o colores: rojo, amarillo (o verde) y azul. Y para cada quark existe, claro, un antiquark.
Por supuesto, nombres como los anteriores –color, sabor, arriba, abajo…– no representan la realidad que asociamos normalmente a tales conceptos, aunque puede en algún caso existir una cierta lógica en ellos, como sucede con el color. Veamos lo que el propio Gell-Mann (1995, 199) ha señalado con respecto a este término:
Aunque el término «color» es más que nada un nombre gracioso, sirve también como metáfora. Hay tres colores, denominados rojo, verde y azul a semejanza de los tres colores básicos en una teoría simple de la visión humana del color (en el caso de la pintura, los tres colores primarios suelen ser el rojo, el amarillo y el azul, pero para mezclar luces en lugar de pigmentos, el amarillo se sustituye por el verde). La receta para un neutrón o un protón consiste en tomar un quark de cada color, es decir, uno rojo, uno verde y uno azul, de modo que la suma de colores se anule. Como en la visión del color blanco se puede considerar una mezcla de rojo, verde y azul, podemos decir metafóricamente que el neutrón y el protón son blancos.
En definitiva, los quarks tienen color pero los hadrones no: son blancos. La idea es que sólo las partículas blancas son observables directamente en la naturaleza, mientras que los quarks no; ellos están «confinados», asociados formando hadrones. Nunca podremos observar un quark libre. Ahora bien, para que los quarks permanezcan confinados deben existir fuerzas entre ellos muy diferentes de las electromagnéticas o de las restantes. «Así como la fuerza electromagnética entre electrones está mediada por el intercambio virtual de fotones», utilizando de nuevo a Gell-Mann (1995, 200), «los quarks están ligados entre sí por una fuerza que surge del intercambio de otros cuantos: los gluones (del inglés glue, pegar), llamados así porque hacen que los quarks se peguen formando objetos observables blancos como el protón y el neutrón» (21).
Aproximadamente una década después de la introducción de los quarks, se desarrolló una teoría, la cromodinámica cuántica, que explica por qué los quarks están confinados tan fuertemente que nunca pueden escapar de las estructuras hadrónicas que forman. Por supuesto, el nombre cromodinámica –procedente del término griego cromos (color)– aludía al color de los quarks (y el adjetivo «cuántica» a que es compatible con los requisitos cuánticos). Al ser la cromodinámica cuántica una teoría de las partículas elementales con color, y al estar éste asociado a los quarks, que a su vez tratan de los hadrones, las partículas sujetas a la interacción fuerte, tenemos que la cromodinámica cuántica describe esta interacción.
Con la electrodinámica cuántica –logro, como ya indiqué, de la primera mitad del siglo xx– y la cromodinámica cuántica, se disponía de teorías cuánticas para las interacciones electromagnética y fuerte. Pero ¿y la débil, la responsable de los fenómenos radiactivos? En 1932, Enrico Fermi (1901-1954), uno de los mejores físicos de su siglo, desarrolló una teoría para la interacción débil (que aplicó, sobre todo, a la denominada «desintegración beta», proceso radiactivo en el que un neutrón se desintegra dando lugar a un protón, un electrón y un antineutrino), que mejoraron en 1959 Robert Marshak (1916-1992), E. C. George Sudarshan (n. 1931), Richard Feynman y Murray Gell-Mann, pero la versión más satisfactoria para una teoría cuántica de la interacción débil llegó cuando en 1967 el estadounidense Steven Weinberg (n. 1933) y el año siguiente el paquistaní (afincando en Inglaterra) Abdus Salam (1929-1996) propusieron independientemente una teoría que unificaba las interacciones electromagnética y débil. Su modelo incorporaba ideas propuestas en 1960 por Sheldon Glashow (n. 1932) (22). Por estos trabajos, Weinberg, Salam y Glashow compartieron el Premio Nobel de Física de 1979; esto es, después de que, en 1973, una de las predicciones de su teoría –la existencia de las denominadas «corrientes neutras débiles»– fuese corroborada experimentalmente en el CERN.
La teoría electrodébil unificaba la descripción de las interacciones electromagnética y débil, pero ¿no sería posible avanzar por la senda de la unificación, encontrando una formulación que incluyese también a la interacción fuerte, descrita por la cromodinámica cuántica? La respuesta, positiva, a esta cuestión vino de la mano de Howard Georgi (n. 1947) y Glashow, que introdujeron las primeras ideas de lo que se vino a denominar teorías de gran unificación (GUT), que ya mencioné con anterioridad (Georgi y Glashow 1974).
El impacto principal de esta familia de teorías se ha producido en la cosmología; en concreto en la descripción de los primeros instantes del Universo. Desde la perspectiva de las GUTs, al principio existía sólo una fuerza que englobaba las electromagnética, débil y fuerte, que fueron separándose al irse enfriando el Universo. Con semejante equipaje teórico es posible ofrecer explicaciones de cuestiones como el hecho de que exista (al menos aparentemente y para nuestra fortuna) más materia que antimateria en el Universo. Esto es debido a que las GUTs tienen en común que en ellas no se conserva una magnitud denominada «número bariónico», lo que significa que son posibles procesos en los que el número de bariones –entre los que se encuentran, recordemos, los protones y los neutrones– producidos no es igual al de antibariones. Utilizando esta propiedad, el físico japonés Motohiko Yoshimura (1978) demostró que un estado inicial en el que exista igual número de materia y antimateria puede evolucionar convirtiéndose en uno con más protones o neutrones que sus respectivas antipartículas, produciendo así un Universo como el nuestro, en el que hay más materia que antimateria.
Gracias al conjunto formado por las anteriores teorías, poseemos un marco teórico extraordinario para entender de qué está formada la naturaleza. Su capacidad predictiva es increíble. De acuerdo con él, se acepta que toda la materia del Universo está formada por agregados de tres tipos de partículas elementales: electrones y sus parientes (las partículas denominadas muón y tau), neutrinos (neutrino electrónico, muónico y tauónico) y quarks, además de por los cuantos asociados a los campos de las cuatro fuerzas que reconocemos en la naturaleza (23); el fotón para la interacción electromagnética, las partículas Z y W (bosones gauge) para la débil, los gluones para la fuerte y, aunque la gravitación todavía no se ha incorporado a ese marco, los aún no observados gravitones para la gravitacional. El subconjunto formado por la cromodinámica cuántica y teoría electrodébil (esto es, el sistema teórico que incorpora las teorías relativistas y cuánticas de las interacciones fuerte, electromagnética y débil) es especialmente poderoso si tenemos en cuenta el balance predicciones-comprobaciones experimentales. Es denominado modelo estándar. De acuerdo al distinguido físico e historiador de la ciencia, Silvan Schweber (1997, 645), «la formulación del Modelo Estándar es uno de los grandes logros del intelecto humano, uno que rivaliza con la mecánica cuántica. Será recordado –junto a la relatividad general, la mecánica cuántica y el desciframiento del código genético– como uno de los avances intelectuales más sobresalientes del siglo xx. Pero, mucho más que la relatividad general y la mecánica cuántica, es el producto de un esfuerzo colectivo». Quiero hacer hincapié en esta última expresión, «esfuerzo colectivo». El lector atento de estas páginas se dará cuenta fácilmente, sin embargo, de que yo únicamente me he referido en estas páginas a unos pocos físicos; a la punta de un gran iceberg. Ha sido inevitable: la historia de la física de altas energías requiere no ya de un extenso libro, sino de varios.
Ahora bien, no obstante su éxito obviamente el modelo estándar no es «la teoría final». Por una parte porque la interacción gravitacional queda al margen, pero también porque incluye demasiados parámetros que hay que determinar experimentalmente. Se trata de las, siempre incómodas pero fundamentales, preguntas del tipo «¿por qué?». ¿Por qué existen las partículas fundamentales que detectamos? ¿Por qué esas partículas tienen las masas que tienen? ¿Por qué, por ejemplo, el tau pesa alrededor de 3.520 veces lo que el electrón? ¿Por qué son cuatro las interacciones fundamentales, y no tres, cinco o sólo una? ¿Y por qué tienen estas interacciones las propiedades (como intensidad o rango de acción) que poseen?

¿Un mundo de ultraminúsculas cuerdas?

Pasando ahora a la gravitación, la otra interacción básica, ¿no se puede unificar con las otras tres? Un problema central es la inexistencia de una teoría cuántica de la gravitación que haya sido sometida a pruebas experimentales. Existen candidatos para cumplir ese espléndido sueño unificador, unos complejos edificios matemáticos llamados teorías de cuerdas.
Según la teoría de cuerdas, las partículas básicas que existen en la naturaleza son en realidad filamentos unidimensionales (cuerdas extremadamente delgadas) en espacios de muchas más dimensiones que las tres espaciales y una temporal de las que somos conscientes; aunque más que decir «son» o «están constituidas» por tales cuerdas, habría que decir que «son manifestaciones» de vibraciones de esas cuerdas. En otras palabras, si nuestros instrumentos fuesen suficientemente poderosos, lo que veríamos no serían «puntos» con ciertas características a los que llamamos electrón, quark, fotón o neutrino, por ejemplo, sino minúsculas cuerdas (cuyos cabos pueden estar abiertos o cerrados) vibrando. La imagen que suscita esta nueva visión de la materia más que «física» es, por consiguiente, «musical»: «Del mismo modo que las diferentes pautas vibratorias de la cuerda de un violín dan lugar a diferentes notas musicales, los diferentes modelos vibratorios de una cuerda fundamental dan lugar a diferentes masas y cargas de fuerzas… El Universo –que está compuesto por un número enorme de esas cuerdas vibrantes–. Es algo semejante a una sinfonía cósmica», ha señalado el físico, y miembro destacado de la «comunidad de cuerdas», Brian Greene (2001, 166-168) en un libro titulado El Universo elegante, que ha sido un éxito editorial.
Es fácil comprender el atractivo que algunos sienten por estas ideas: «Las cuerdas son verdaderamente fundamentales; son “átomos”, es decir componentes indivisibles, en el sentido más auténtico de la palabra griega, tal como la utilizaron los antiguos griegos. Como componentes absolutamente mínimos de cualquier cosa, representan el final de la línea –la última de las muñecas rusas llamadas “matrioskas”– en las numerosas capas de subestructuras dentro del mundo microscópico» (Green 2001, 163). Ahora bien, ¿qué tipo de materialidad es la de estos constructos teóricos unidimensionales? ¿Podemos pensar en ellos como una especie de «materia elemental» en algún sentido parecido a aquel en el que se piensa cuando se habla habitualmente de materia, incluso de partículas tan (a la postre acaso sólo aparentemente) elementales como un electrón, un muón o un quark?
Decía antes que las teorías de cuerdas son unos complejos edificios matemáticos, y así es. De hecho, las matemáticas de la teoría de las cuerdas son tan complicadas que hasta ahora nadie conoce ni siquiera las ecuaciones de las fórmulas exactas de esa teoría, únicamente unas aproximaciones de dichas ecuaciones, e incluso estas ecuaciones aproximadas resultan ser tan complicadas que hasta la fecha sólo se han resuelto parcialmente. No es por ello sorprendente que uno de los grandes líderes de esta disciplina sea un físico especialmente dotado para las matemáticas. Me estoy refiriendo al estadounidense Edward Witten (n. 1951). Para hacerse una idea de su talla como matemático basta con señalar que en 1990 recibió (junto a Pierre-Louis Lions, Jean-Christophe Yoccoz y Shigefumi Mori) una de las cuatro medallas Fields que se conceden cada cuatro años y que constituyen el equivalente en matemáticas de los Premios Nobel. Fue Witten (1995) quien argumentó, iniciando así lo que se denomina «la segunda revolución de la cuerdas», que para que la teoría de cuerdas (o supercuerdas) pueda aspirar a ser realmente una Teoría del Todo, debe tener diez dimensiones espaciales más una temporal, esto es, once (Witten denominó Teoría M a esa formulación, todavía por desarrollar completamente) (24).
Enfrentados con las teorías de cuerdas, es razonable preguntarse si al avanzar en la exploración de la estructura de la materia no habremos alcanzado ya niveles en los que la «materialidad» –esto es, la materia– se desvanece transformándose en otra cosa diferente. Y ¿en qué otra cosa? Pues si estamos hablando de partículas que se manifiestan como vibraciones de cuerdas, ¿no será esa «otra cosa», una estructura matemática? Una vibración es, al fin y al cabo, la oscilación de algo material, pero en cuanto a estructura permanente tiene probablemente más de ente matemático que de ente material. Si fuese así, podríamos decir que se habría visto cumplido el sueño, o uno de los sueños, de Pitágoras. Los físicos habrían estado laborando duramente a lo largo de siglos, milenios incluso, para descubrir, finalmente, que la materia se les escapa de las manos, como si de una red se tratase, convirtiéndose en matemática, en estructuras matemáticas. La teoría de cuerdas, en resumen, resucita viejos problemas, acaso fantasmas. Problemas como el de la relación entre la física (y el mundo) y la matemática.
Independientemente de estos aspectos de naturaleza en esencia filosófica, hay otros que es imprescindible mencionar. Y es que hasta la fecha las teorías de cuerdas han demostrado muy poco, sobre todo si no olvidamos que la ciencia es explicación teórica, sí, pero también experimentos, someter la teoría al juez último que es la comprobación experimental. Las teorías de cuerdas son admiradas por algunos, comentadas por muchos y criticadas por bastantes, que insisten en que su naturaleza es excesivamente especulativa. Así, Lee Smolin (2007, 17-18), un distinguido físico teórico, ha escrito en un libro dedicado a estas teorías:
En los últimos veinte años, se ha invertido mucho esfuerzo en la teoría de cuerdas, pero todavía desconocemos si es cierta o no. Incluso después de todo el trabajo realizado, la teoría no ha proporcionado ninguna predicción que pueda ser comprobada mediante experimentos actuales o, al menos, experimentos que podamos concebir en la actualidad. Las escasas predicciones limpias que propone ya han sido formuladas por otras teorías aceptadas.
Parte de la razón por la que la teoría de cuerdas no realiza nuevas predicciones es que parece presentarse en un número infinito de versiones. Aun limitándonos a las teorías que coinciden con algunos de los hechos básicos observados sobre nuestro Universo, por ejemplo, su vasto tamaño o la existencia de energía oscura, nos siguen quedando algo así como 10500 teorías de cuerdas diferentes; es decir, un 1 con 500 ceros detrás, más que todos los átomos conocidos del Universo. Una cantidad tal de teorías, nos deja poca esperanza de poder identificar algún resultado de algún experimento que no se pudiera incluir en alguna de ellas. Por tanto, no importa lo que muestren los experimentos, pues no se puede demostrar que la teoría de cuerdas sea falsa, aunque lo contrario también es cierto: ningún experimento puede demostrar que sea cierta.
Recordemos en este punto que uno de los sistemas metodológicos de la ciencia más influyentes continúa siendo el construido por el filósofo de origen austriaco, instalado finalmente en la London School of Economics de Londres, Karl Popper (1902-1994), quien siempre insistió en que una teoría que no es refutable mediante ningún experimento imaginable no es científica; esto es, que si no es posible imaginar algún experimento cuyos resultados contradigan las predicciones de una teoría, ésta no es realmente científica. Y aunque en mi opinión tal criterio es demasiado exigente para ser siempre verdad, constituye una buena guía. En cualquier caso, el futuro tendrá la última palabra sobre las teorías de cuerdas.

Nucleosíntesis estelar

En las páginas anteriores me he ocupado de los aspectos más básicos de la estructura de la materia, pero la ciencia no se reduce a buscar lo más fundamental, la estructura más pequeña; también pretende comprender aquello que nos es más próximo, más familiar. Es obligado, en este sentido, referirse a otro de los grandes logros de la física del siglo xx: la reconstrucción teórica de los procesos –nucleosíntesis– que condujeron a formar los átomos que encontramos en la naturaleza, y de los que nosotros mismos estamos formados. De estas cuestiones se ocupa la física nuclear, una disciplina relacionada, naturalmente, con la física de altas energías, aunque ésta sea más «fundamental» al ocuparse de estructuras más básicas que los núcleos atómicos.
De hecho, la física de altas energías proporciona las bases sobre las que se asienta el edificio de la física nuclear que se ocupa de la nucleosíntesis estelar. Han sido, en efecto, los físicos de altas energías los que se han ocupado, y ocupan, de explicar cómo de la «sopa» indiferenciada de radiación y energía que surgió del Big Bang fueron formándose las partículas que constituyen los átomos (25).
Al ir disminuyendo la temperatura del Universo, esa sopa se fue diferenciando. A la temperatura de unos 30.000 millones de grados Kelvin (que se alcanzó en aproximadamente 0,11 segundos), los fotones –esto es, recordemos, la luz– se independizaron de la materia, distribuyéndose uniformemente por el espacio. Únicamente cuando la temperatura del Universo bajó a los 3.000 millones de grados Kelvin (casi 14 segundos después del estallido inicial) comenzaron a formarse –mediante la unión de protones y neutrones– algunos núcleos estables, básicamente el hidrógeno (un protón en torno al cual orbita un electrón) y el helio (dos protones y dos neutrones en el núcleo, con dos electrones como «satélites»). Estos dos elementos, los más ligeros que existen en la naturaleza, fueron –junto a fotones y neutrinos–, los principales productos del Big Bang, y representan aproximadamente el 73% (el hidrógeno) y el 25% (el helio) de la composición del universo (26).
Tenemos, por consiguiente, que el Big Bang surtió generosamente al Universo de hidrógeno y de helio. Pero ¿y los restantes elementos? Porque sabemos que hay muchos más elementos en la naturaleza. No hace falta ser un experto para saber que existe el oxígeno, el hierro, el nitrógeno, el carbono, el plomo, el sodio, el cinc, el oro y muchos elementos más. ¿Cómo se formaron?
Antes incluso de que los físicos de altas energías hubiesen comenzado a estudiar la nucleosíntesis primordial, hubo físicos nucleares que durante la primera mitad del siglo xx se ocuparon del problema de la formación de los elementos más allá del hidrógeno y el helio. Entre ellos es obligado mencionar a Carl Friedrich von Weizsäcker (1912-2007) en Alemania y a Hans Bethe (1906-2005) en Estados Unidos (Weizsäcker 1938; Bethe y Critchfield 1938; Bethe 1939a, b) (27). Justo cuando iba a comenzar la segunda mitad de la centuria, George Gamow (1904-1968) y sus colaboradores, Ralph Alpher (1921-2007) y Robert Herman (1914-1997), dieron otro paso importante, que fue seguido diecisiete años después por Robert Wagoner (n. 1938), William Fowler (1911-1995) y Fred Hoyle, que armados con un conjunto mucho más completo de datos de reacciones nucleares, explicaron que en el universo el litio constituye una pequeña fracción (10-8) de la masa correspondiente al hidrógeno y al helio, mientras que el total de los restantes elementos representa un mero 10-11 (Wagoner, Fowler y Hoyle 1967) (28).
Gracias a aportaciones como éstas –y las de muchos otros– ha sido posible reconstruir las reacciones nucleares más importantes en la nucleosíntesis estelar. Una de estas reacciones es la siguiente: dos núcleos de helio chocan y forman un átomo de berilio, elemento que ocupa el cuarto lugar (número atómico) en la tabla periódica, tras el hidrógeno, helio y litio (su peso atómico es 9, frente a 1 para el hidrógeno, 4 para helio y 6 para el litio). En realidad se produce más de un tipo de berilio; uno de ellos, el isótopo de peso atómico 8 es muy radiactivo, existiendo durante apenas una diezmilbillonésima de segundo, tras lo cual se desintegra produciendo de nuevo dos núcleos de helio. Pero si durante ese instante de vida el berilio choca con un tercer núcleo de helio puede formar un núcleo de carbono (número atómico 6 y peso atómico 12), que es estable. Y si las temperaturas son suficientemente elevadas, los núcleos de carbono se combinan y desintegran de maneras muy diversas, dando lugar a elementos como magnesio (número atómico 12), sodio (11), neón (10) y oxígeno (8). A su vez, los núcleos de oxígeno pueden unirse y formar azufre y fósforo. De este modo, se fabrican elementos cada vez más pesados. Hasta llegar al hierro (26).
Hechos de este tipo nos llevan a otra cuestión: la de cómo han llegado estos elementos a la Tierra, puesto que el lugar en el que fueron fabricados necesita de energías y temperaturas que no se dan en nuestro planeta. Y si suponemos que no deben existir diferencias grandísimas entre nuestro planeta y los demás –salvo en detalles como composición o posibilidad de que exista vida–, cómo han llegado a cualquier otro planeta. Pues bien, una parte de los elementos (hasta el hierro) que no se produjeron en los primeros instantes del Universo, se han fabricado sobre todo en el interior de estrellas. La emisión al espacio exterior de esos elementos puede tener lugar de tres maneras: mediante la lenta pérdida de masa en estrellas viejas, en la denominada fase «gigante» de la evolución estelar; durante los relativamente frecuentes estallidos estelares que los astrónomos denominan «novas»; y en las dramáticas y espectaculares explosiones que se producen en la etapa estelar final que alumbran las denominadas «supernovas» (una de estas explosiones fue detectada en 1987: la supernova SN1987A; la explosión había tenido lugar 170.000 años antes, el tiempo que ha tardado la luz en llegar a la Tierra).Es sobre todo en la explosión de las supernovas cuando los elementos pesados fabricados en la nucleosíntesis estelar se difunden por el espacio. No se conoce demasiado bien por qué se producen estas explosiones, pero se cree que además de expulsar los elementos que acumulaba la estrella en su interior (salvo parte que retiene convertidos en objetos muy peculiares, como estrellas de neutrones), en el estallido se sintetizan elementos todavía más pesados que el hierro; elementos como el cobre, cinc, rubidio, plata, osmio, uranio, y así hasta una parte importante de los más de cien elementos que contiene en la actualidad la tabla periódica, y que son relativamente abundantes en sistemas estelares como el nuestro, el Sistema Solar.
Precisamente por esta abundancia de elementos pesados, parece razonable pensar que el Sol es una estrella de segunda generación, formada, algo menos de hace 5.000 millones de años, por la condensación de residuos de una estrella anterior que murió en una explosión de supernova. El material procedente de semejante explosión se agrupó en un disco de gas y polvo con una protoestrella en el centro. El Sol se «encendió» cuando el núcleo central de materia se comprimió tanto que los átomos de hidrógeno se fundieron entre sí. Y alrededor suyo, a lo largo de bandas elípticas, siguiendo un proceso parecido pero menos intenso gravitacionalmente, se formaron los planetas de lo que llamamos Sistema Solar: Mercurio, Venus, la Tierra, Marte, Júpiter, Saturno, Urano, Neptuno y Plutón (aunque éste no es desde hace poco considerado en la categoría de «planeta»), y los satélites de éstos, como la Luna.
Desde esta perspectiva, la Tierra (formada hace unos 4.500 millones de años), al igual que los demás planetas, es algo parecido a un pequeño basurero (o cementerio) cósmico; un lugar en el que se han acumulado restos de la vida de estrellas, no lo suficientemente importantes como para dar lugar a un astro; esto es, aglomerados de elementos en cantidades tan pequeñas que no han podido desencadenar en su interior reacciones termonucleares como las que se producen en las estrellas. Pero al igual que en los basureros también se abre camino la vida, así ocurrió en esta Tierra nuestra, con su diámetro de, aproximadamente, 12.700 kilómetros y su peso de unas 6•1021 (6 seguido de 21 ceros) toneladas. Nosotros somos testigos y demostración de este fenómeno.
Dentro de unos 7.500 millones de años, la zona central del Sol, en la que el hidrógeno se convierte en helio, aumentará de tamaño a medida que el hidrógeno se vaya consumiendo. Y cuando ese núcleo de helio alcance un tamaño suficiente, el Sol se dilatará hasta convertirse en una estrella de las denominadas gigantes rojas. Se hará tan gigantesca que su diámetro terminará alcanzando la órbita de la Tierra, acabando con ella. Antes de que suceda esto, la superficie terrestre llegará a estar tan caliente como para que el plomo se funda, hiervan los océanos y desaparezca todo rastro de vida. De esta manera, los procesos nucleares que nos dieron la vida acabarán con ella.

Más allá del mundo microscópico

Las teorías físicas de las que he estado tratando en las secciones precedentes son, es cierto, teorías cuánticas; ahora bien, el mundo de la física cuántica no se restringe a ellas y constituiría un grave error no referirse a otras novedades que surgieron en ese mundo durante la segunda mitad del siglo xx. Enfrentado con la difícil cuestión de buscar los avances más importantes, he optado por seleccionar dos grupos. El primero incluye desarrollos que han reforzado a la física cuántica frente a críticas como las que lideró Einstein junto a Podolsky y Rosen. El segundo trata de los trabajos que han puesto de relieve la existencia de fenómenos cuánticos macroscópicos.

No hay comentarios.:

Publicar un comentario

MOVIMIENTO RECTILÍNEO

MOVIMIENTO RECTILÍNEO UNIFORME (M.R.U.) Un movimiento rectilíneo uniforme es aquél cuya velocidad es constante, por tanto, la aceleraci...